3" Elima-Matic Bolted Aluminum - ATEX
with Metal Center Section

E3 Metal Pumps
• Aluminum
Safety Information

IMPORTANT

Read the safety warnings and instructions in this manual before pump installation and start-up. Failure to comply with the recommendations stated in this manual could damage the pump and void factory warranty.

When the pump is used for materials that tend to settle out or solidify, the pump should be flushed after each use to prevent damage. In freezing temperatures the pump should be completely drained between uses.

CAUTION

Before pump operation, inspect all fasteners for loosening caused by gasket creep. Retighten loose fasteners to prevent leakage. Follow recommended torques stated in this manual.

Plastic pumps and plastic components are not UV stabilized. Ultraviolet radiation can damage these parts and negatively affect material properties. Do not expose to UV light for extended periods of time.

WARNING

Pump not designed, tested or certified to be powered by compressed natural gas. Powering the pump with natural gas will void the warranty.

The use of non-OEM replacement parts will void (or negate) agency certifications, including CE, ATEX, CSA, 3A and EC1935 compliance (Food Contact Materials). Warren Rupp, Inc. cannot ensure nor warrant non-OEM parts to meet the stringent requirements of the certifying agencies.

WARNING

When used for toxic or aggressive fluids, the pump should always be flushed clean prior to disassembly.

Before maintenance or repair, shut off the compressed air line, bleed the pressure, and disconnect the air line from the pump. Be certain that approved eye protection and protective clothing are worn at all times. Failure to follow these recommendations may result in serious injury or death.

Airborne particles and loud noise hazards. Wear eye and ear protection.

In the event of diaphragm rupture, pumped material may enter the air end of the pump, and be discharged into the atmosphere. If pumping a product that is hazardous or toxic, the air exhaust must be piped to an appropriate area for safe containment.

Take action to prevent static sparking. Fire or explosion can result, especially when handling flammable liquids. The pump, piping, valves, containers and other miscellaneous equipment must be properly grounded.

When the pump is used for materials that tend to settle out or solidify, the pump should be flushed after each use to prevent damage. In freezing temperatures the pump should be completely drained between uses.

ATEX Pumps - Conditions For Safe Use

1. Ambient temperature range is as specified in tables 1 & 2 on the next page
2. ATEX compliant pumps are suitable for use in explosive atmospheres when the equipment is properly grounded in accordance with local electrical codes
3. Conductive Polypropylene, conductive Acetal or conductive PVDF pumps are not to be installed in applications where the pumps may be subjected to oil, greases and hydraulic liquids.
4. When operating pumps equipped with non-conductive diaphragms that exceed the maximum permissible projected area, as defined in EN ISO 80079-36 : 2016 section 6.7.5 table 8, the following protection methods must be applied
 - Equipment is always used to transfer electrically conductive fluids or
 - Explosive environment is prevented from entering the internal portions of the pump, i.e. dry running.
Temperature Tables

Table 1. Category 2 ATEX Rated Pumps

<table>
<thead>
<tr>
<th>Ambient Temperature Range [°C]</th>
<th>Process Temperature Range [°C]</th>
<th>Temperature Class</th>
<th>Maximum Surface Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20°C to +60°C</td>
<td>-20°C to +80°C</td>
<td>T5</td>
<td>T100°C</td>
</tr>
<tr>
<td></td>
<td>-20°C to +108°C</td>
<td>T4</td>
<td>T135°C</td>
</tr>
<tr>
<td></td>
<td>-20°C to +160°C</td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-20°C to +177°C</td>
<td>(225°C) T2</td>
<td>T200°C</td>
</tr>
</tbody>
</table>

Table 2. Category M2 ATEX Rated Pumps for Mining

<table>
<thead>
<tr>
<th>Ambient Temperature Range [°C]</th>
<th>Process Temperature Range [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20°C to +60°C</td>
<td>-20°C to +150°C</td>
</tr>
</tbody>
</table>

Note: The ambient temperature range and the process temperature range should not exceed the operating temperature range of the applied plastic parts as listed in the manuals of the pumps.
Table of Contents

SECTION 1: PUMP SPECIFICATIONS 1
- Nomenclature
- Performance
- Materials
- Dimensional Drawings

SECTION 2: INSTALLATION & OPERATION ... 9
- Principle of Pump Operation
- Typical Installation Guide
- Troubleshooting

SECTION 3: EXPLODED VIEW 12
- Composite Drawings
- Parts List
- Composite Drawings
- Parts List
- Materials Code

SECTION 4: WARRANTY & CERTIFICATES .. 17
- Warranty
- EU Declaration of Conformity - Machinery Directive
- EU Declaration of Conformity - ATEX Directive
Explanation of Pump Nomenclature

Your Serial #: (fill in from pump nameplate) ________________________

Your Model #: (fill in from pump nameplate) ________________________

Model #: X X X X X X X X X X X X

Options (if applicable)

Design Level

Construction Design

Diaphragm Series

Valve Seat Material/Valve Seat O-Ring Material

Valve Ball Material

Diaphragm Material

Non-Wetted Parts

Wetted Parts

Pump Size

Model

Model

Pump Size

Wetted Parts

Non-Wetted Parts

Diaphragm Material

Diaphragm Series

Valve Ball Material

Seat/Valve Seat O-Ring Material

Construction Design

Design Level

Miscellaneous Options

More than one option may be specified for a particular pump model.

Your Serial #: (fill in from pump nameplate) ________________________

Your Model #: (fill in from pump nameplate) ________________________

Model #: X X X X X X X X X X X X

Options (if applicable)

Design Level

Construction Design

Diaphragm Series

Valve Seat Material/Valve Seat O-Ring Material

Valve Ball Material

Diaphragm Material

Non-Wetted Parts

Wetted Parts

Pump Size

Model

Model

Pump Size

Wetted Parts

Non-Wetted Parts

Diaphragm Material

Diaphragm Series

Valve Ball Material

Seat/Valve Seat O-Ring Material

Construction Design

Design Level

Miscellaneous Options

More than one option may be specified for a particular pump model.

Your Serial #: (fill in from pump nameplate) ________________________

Your Model #: (fill in from pump nameplate) ________________________

Model #: X X X X X X X X X X X X

Options (if applicable)

Design Level

Construction Design

Diaphragm Series

Valve Seat Material/Valve Seat O-Ring Material

Valve Ball Material

Diaphragm Material

Non-Wetted Parts

Wetted Parts

Pump Size

Model

Model

Pump Size

Wetted Parts

Non-Wetted Parts

Diaphragm Material

Diaphragm Series

Valve Ball Material

Seat/Valve Seat O-Ring Material

Construction Design

Design Level

Miscellaneous Options

More than one option may be specified for a particular pump model.

Your Serial #: (fill in from pump nameplate) ________________________

Your Model #: (fill in from pump nameplate) ________________________

Model #: X X X X X X X X X X X X

Options (if applicable)

Design Level

Construction Design

Diaphragm Series

Valve Seat Material/Valve Seat O-Ring Material

Valve Ball Material

Diaphragm Material

Non-Wetted Parts

Wetted Parts

Pump Size

Model

Model

Pump Size

Wetted Parts

Non-Wetted Parts

Diaphragm Material

Diaphragm Series

Valve Ball Material

Seat/Valve Seat O-Ring Material

Construction Design

Design Level

Miscellaneous Options

More than one option may be specified for a particular pump model.
Materials

Material Profile:

CAUTION! Operating temperature limitations are as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>Operating Temperatures:</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive Acetal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPDM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hytrel®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoprene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nylon</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polypropylene: A thermoplastic polymer. Moderate tensile and flex strength. Resists strong acids and alkali. Attacked by chlorine, fuming nitric acid and other strong oxidizing agents.

PVDF: (Polyvinylidene Fluoride) A durable fluoropolymer with excellent chemical resistance. Excellent for UV applications. High tensile strength and impact resistance.

Santoprene®: Injection molded thermoplastic elastomer with no fabric layer. Long mechanical flex life. Excellent abrasion resistance.

UHMW PE: A thermoplastic that is highly resistant to a broad range of chemicals. Exhibits outstanding abrasion and impact resistance, along with environmental stress-cracking resistance.

Urethane: Shows good resistance to abrasives. Has poor resistance to most solvents and oils.

Virgin PTFE: (PFA/TFE) Chemically inert, virtually impervious. Very few chemicals are known to chemically react with PTFE; molten alkali metals, turbulent liquid or gaseous fluorine and a few fluoro-chemicals such as chlorine trifluoride or oxygen difluoride which readily liberate free fluorine at elevated temperatures.

Maximum and Minimum Temperatures are the limits for which these materials can be operated. Temperatures coupled with pressure affect the longevity of diaphragm pump components. Maximum life should not be expected at the extreme limits of the temperature ranges.

Metals:

Alloy C: Equal to ASTM494 CW-12M-1 specification for nickel and nickel alloy.

Stainless Steel: Equal to or exceeding ASTM specification A743 CF-8M for corrosion resistant iron chromium, iron chromium nickel and nickel based alloy castings for general applications. Commonly referred to as 316 Stainless Steel in the pump industry.

For specific applications, always consult the Chemical Resistance Chart.

Note: This document is a high level guide. Please be aware that not all model and or material combinations are possible for all sizes. Please consult factory or your distributor for specific details.
Performance

E3 3" Bolted Aluminum
Rubber and TPE Fitted - Rugged

Flow Rate
Adjustable to 0-273 gpm (1,033 lpm)

Port Size
Suction 3" ANSI 150 lbs. Class (DIN80)
Discharge 3" ANSI 150 lbs. Class

Air Inlet 1/2" NPT
Air Exhaust 1" NPT

Suction Lift
Dry 16" (4.9 m)
Wet 31" (9.4 m)

Max Solid Size (Diameter)
.................. 3/8" (9.5 mm)

Max Noise Level 93 dB(A)

Shipping Weights
Aluminum 146 lbs. (66.2 kg)

NOTE: Performance based on the following: PTFE fitted pump, flooded suction, water at ambient conditions. The use of other materials and varying hydraulic conditions may result in deviations in excess of 5%.

E3 3" Bolted Aluminum
Rubber and TPE Fitted - Domed

Flow Rate
Adjustable to 0-252 gpm (954 lpm)

Port Size
Suction 3" ANSI 150 lbs. Class (DIN80)
Discharge 3" ANSI 150 lbs. Class

Air Inlet 1/2" NPT
Air Exhaust 1" NPT

Suction Lift
Dry 17" (5.2 m)
Wet 32" (9.8 m)

Max Solid Size (Diameter)
.................. 3/8" (9.5 mm)

Max Noise Level 94 dB(A)

Shipping Weights
Aluminum 146 lbs. (66.2 kg)

NOTE: Performance based on the following: PTFE fitted pump, flooded suction, water at ambient conditions. The use of other materials and varying hydraulic conditions may result in deviations in excess of 5%.

E3 3" Bolted Aluminum
PTFE Fitted

Flow Rate
Adjustable to 0-186 gpm (704 lpm)

Port Size
Suction 3" ANSI 150 lbs. Class (DIN80)
Discharge 3" ANSI 150 lbs. Class

Air Inlet 1/2" NPT
Air Exhaust 1" NPT

Suction Lift
Dry 13" (5.2 m)
Wet 31" (9.8 m)

Max Solid Size (Diameter)
.................. 3/8" (9.5 mm)

Max Noise Level 92 dB(A)

Shipping Weights
Aluminum 146 lbs. (66.2 kg)

NOTE: Performance based on the following: PTFE fitted pump, flooded suction, water at ambient conditions. The use of other materials and varying hydraulic conditions may result in deviations in excess of 5%.
Dimensional Drawings

E3 Aluminum Bolted - ANSI Flange
Dimensions in inches (metric dimensions in brackets). Dimensional Tolerance .125" (3mm).

1/2" NPT
AIR INLET

3" 150# ANSI / DIN
DISCHARGE FLANGE

1" NPT
AIR EXHAUST

3" 150# ANSI / DIN
SUCTION FLANGE

BOTTOM VIEW
Dimensional Drawings

E3 Aluminum Bolted - NPT / BSP

Dimensionally Interchangeable with Versa-Matic and Wilden Clamped Pumps

Dimensions in inches (metric dimensions in brackets). Dimensional Tolerance .125” (3mm).
Air-Operated Double Diaphragm (AODD) pumps are powered by compressed air or nitrogen.

The main directional (air) control valve ① distributes compressed air to an air chamber, exerting uniform pressure over the inner surface of the diaphragm ②. At the same time, the exhausting air ③ from behind the opposite diaphragm is directed through the air valve assembly(s) to an exhaust port ④.

As inner chamber pressure (P1) exceeds liquid chamber pressure (P2), the rod ⑤ connected diaphragms shift together creating discharge on one side and suction on the opposite side. The discharged and primed liquid’s directions are controlled by the check valves (ball or flap) ⑥ orientation.

The pump primes as a result of the suction stroke. The suction stroke lowers the chamber pressure (P3) increasing the chamber volume. This results in a pressure differential necessary for atmospheric pressure (P4) to push the fluid through the suction piping and across the suction side check valve and into the outer fluid chamber ⑦.

Suction (side) stroking also initiates the reciprocating (shifting, stroking or cycling) action of the pump. The suction diaphragm’s movement is mechanically pulled through its stroke. The diaphragm’s inner plate makes contact with an actuator plunger aligned to shift the pilot signaling valve. Once actuated, the pilot valve sends a pressure signal to the opposite end of the main directional air valve, redirecting the compressed air to the opposite inner chamber.

Pump can be submerged if the pump materials of construction are compatible with the liquid being pumped. The air exhaust must be piped above the liquid level. When the pumped product source is at a higher level than the pump (flooded suction condition), pipe the exhaust higher than the product source to prevent siphoning spills.
Recommended Installation Guide

Available Accessories:
1. Surge Suppressor
2. Filter/Regulator
3. Air Dryer

Installation And Start-Up
Locate the pump as close to the product being pumped as possible. Keep the suction line length and number of fittings to a minimum. Do not reduce the suction line diameter.

Air Supply
Connect the pump air inlet to an air supply with sufficient capacity and pressure to achieve desired performance. A pressure regulating valve should be installed to insure air supply pressure does not exceed recommended limits.

Air Valve Lubrication
The air distribution system is designed to operate WITHOUT lubrication. This is the standard mode of operation. If lubrication is desired, install an air line lubricator set to deliver one drop of SAE 10 non-detergent oil for every 20 SCFM (9.4 liters/sec.) of air the pump consumes. Consult the Performance Curve to determine air consumption.

Air Line Moisture
Water in the compressed air supply may cause icing or freezing of the exhaust air, causing the pump to cycle erratically or stop operating. Water in the air supply can be reduced by using a point-of-use air dryer.

Air Inlet And Priming
To start the pump, slightly open the air shut-off valve. After the pump primes, the air valve can be opened to increase air flow as desired. If opening the valve increases cycling rate, but does not increase the rate of flow, cavitation has occurred. The valve should be closed slightly to obtain the most efficient air flow to pump flow ratio.

CAUTION
The air exhaust should be piped to an area for safe disposition of the product being pumped, in the event of a diaphragm failure.
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptom:</th>
<th>Potential Cause(s):</th>
<th>Recommendation(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Cycles Once</td>
<td>Deadhead (system pressure meets or exceeds air supply pressure).</td>
<td>Increase the inlet air pressure to the pump. Pump is designed for 1:1 pressure ratio at zero flow. (Does not apply to high pressure 2:1 units).</td>
</tr>
<tr>
<td></td>
<td>Air valve or intermediate gaskets installed incorrectly.</td>
<td>Install gaskets with holes properly aligned.</td>
</tr>
<tr>
<td></td>
<td>Bent or missing actuator plunger.</td>
<td>Remove pilot valve and inspect actuator plunger.</td>
</tr>
<tr>
<td>Pump Will Not Operate / Cycle</td>
<td>Pump is over lubricated.</td>
<td>Set lubricator on lowest possible setting or remove. Units are designed for lube free operation.</td>
</tr>
<tr>
<td></td>
<td>Lack of air (line size, PSI, CFM).</td>
<td>Check the air line size and length, compressor capacity (HP vs. cfm required).</td>
</tr>
<tr>
<td></td>
<td>Check air distribution system.</td>
<td>Disassemble and inspect main air distribution valve, pilot valve and pilot valve actuators.</td>
</tr>
<tr>
<td></td>
<td>Discharge line is blocked or clogged manifolds.</td>
<td>Check for inadvertently closed discharge line valves. Clean discharge manifolds/piping.</td>
</tr>
<tr>
<td></td>
<td>Deadhead (system pressure meets or exceeds air supply pressure).</td>
<td>Increase the inlet air pressure to the pump. Pump is designed for 1:1 pressure ratio at zero flow. (Does not apply to high pressure 2:1 units).</td>
</tr>
<tr>
<td></td>
<td>Blocked air exhaust muffler.</td>
<td>Remove muffler screen, clean or de-ice, and re-install.</td>
</tr>
<tr>
<td></td>
<td>Pumped fluid in air exhaust muffler.</td>
<td>Disassemble pump chambers. Inspect for diaphragm rupture or loose diaphragm plate assembly.</td>
</tr>
<tr>
<td></td>
<td>Pump chamber is blocked.</td>
<td>Disassemble and inspect wetted chambers. Remove or flush any obstructions.</td>
</tr>
<tr>
<td>Pump Cycles and Will Not Prime or No Flow</td>
<td>Cavitation on suction side.</td>
<td>Check suction condition (move pump closer to product).</td>
</tr>
<tr>
<td></td>
<td>Check valve obstructed. Valve ball(s) not seating properly or sticking.</td>
<td>Disassemble the wet end of the pump and manually dislodge obstruction in the check valve pocket. Clean out around valve ball cage and valve seat area. Replace valve ball or valve seat if damaged. Use heavier valve ball material.</td>
</tr>
<tr>
<td></td>
<td>Valve ball(s)/seat(s) damaged or attacked by product.</td>
<td>Check Chemical Resistance Guide for compatibility.</td>
</tr>
<tr>
<td></td>
<td>Check valve and/or seat is worn or needs adjusting.</td>
<td>Inspect check valves and seats for wear and proper setting. Replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Suction line is blocked.</td>
<td>Remove or flush obstruction. Check and clear all suction screens or strainers.</td>
</tr>
<tr>
<td></td>
<td>Excessive suction lift.</td>
<td>For lifts exceeding 20' of liquid, filling the chambers with liquid will prime the pump in most cases.</td>
</tr>
<tr>
<td></td>
<td>Suction side air leakage or air in product.</td>
<td>Visually inspect all suction-side gaskets and pipe connections.</td>
</tr>
<tr>
<td></td>
<td>Pumped fluid in air exhaust muffler.</td>
<td>Disassemble pump chambers. Inspect for diaphragm rupture or loose diaphragm plate assembly.</td>
</tr>
<tr>
<td>Pump Cycles Running Sluggish/Stalling, Flow Unsatisfactory</td>
<td>Over lubrication.</td>
<td>Set lubricator on lowest possible setting or remove. Units are designed for lube free operation.</td>
</tr>
<tr>
<td></td>
<td>Icing.</td>
<td>Remove muffler screen, de-ice, and re-install. Install a point of use air drier.</td>
</tr>
<tr>
<td></td>
<td>Clogged manifolds.</td>
<td>Clean manifolds to allow proper air flow</td>
</tr>
<tr>
<td></td>
<td>Deadhead (system pressure meets or exceeds air supply pressure).</td>
<td>Increase the inlet air pressure to the pump. Pump is designed for 1:1 pressure ratio at zero flow. (Does not apply to high pressure 2:1 units).</td>
</tr>
<tr>
<td></td>
<td>Cavitation on suction side.</td>
<td>Check suction (move pump closer to product).</td>
</tr>
<tr>
<td></td>
<td>Lack of air (line size, PSI, CFM).</td>
<td>Check the air line size, length, compressor capacity.</td>
</tr>
<tr>
<td></td>
<td>Excessive suction lift.</td>
<td>For lifts exceeding 20' of liquid, filling the chambers with liquid will prime the pump in most cases.</td>
</tr>
<tr>
<td></td>
<td>Air supply pressure or volume exceeds system hd.</td>
<td>Decrease inlet air (press. and vol.) to the pump. Pump is cavitating the fluid by fast cycling.</td>
</tr>
<tr>
<td></td>
<td>Undersized suction line.</td>
<td>Meet or exceed pump connections.</td>
</tr>
<tr>
<td></td>
<td>Restrictive or undersized air line.</td>
<td>Install a larger air line and connection.</td>
</tr>
<tr>
<td></td>
<td>Suction side air leakage or air in product.</td>
<td>Visually inspect all suction-side gaskets and pipe connections.</td>
</tr>
<tr>
<td></td>
<td>Suction line is blocked.</td>
<td>Remove or flush obstruction. Check and clear all suction screens or strainers.</td>
</tr>
<tr>
<td></td>
<td>Pumped fluid in air exhaust muffler.</td>
<td>Disassemble pump chambers. Inspect for diaphragm rupture or loose diaphragm plate assembly.</td>
</tr>
<tr>
<td></td>
<td>Check valve obstructed.</td>
<td>Disassemble the wet end of the pump and manually dislodge obstruction in the check valve pocket.</td>
</tr>
<tr>
<td></td>
<td>Check valve and/or seat is worn or needs adjusting.</td>
<td>Inspect check valves and seats for wear and proper setting. Replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Entrained air or vapor lock in chamber(s).</td>
<td>Purge chambers through tapped chamber vent plugs. Purging the chambers of air can be dangerous.</td>
</tr>
<tr>
<td>Product Leaking Through Exhaust</td>
<td>Diaphragm failure, or diaphragm plates loose.</td>
<td>Replace diaphragms, check for damage and ensure diaphragm plates are tight.</td>
</tr>
<tr>
<td></td>
<td>Diaphragm stretched around center hole or bolt holes.</td>
<td>Check for excessive inlet pressure or air pressure. Consult Chemical Resistance Chart for compatibility with products, cleaners, temperature limitations and lubrication.</td>
</tr>
<tr>
<td>Premature Diaphragm Failure</td>
<td>Cavitation.</td>
<td>Enlarge pipe diameter on suction side of pump.</td>
</tr>
<tr>
<td></td>
<td>Excessive flooded suction pressure.</td>
<td>Move pump closer to product. Raise pump/place pump on top of tank to reduce inlet pressure. Install Back pressure device (Tech bulletin 41r). Add accumulation tank or pulsation dampener.</td>
</tr>
<tr>
<td></td>
<td>Misapplication (chemical/physical incompatibility).</td>
<td>Consult Chemical Resistance Chart for compatibility with products, cleaners, temperature limitations and lubrication.</td>
</tr>
<tr>
<td></td>
<td>Incorrect diaphragm plates or plates on backwards, installed incorrectly or worn.</td>
<td>Check Operating Manual to check for correct part and installation. Ensure outer plates have not been worn to a sharp edge.</td>
</tr>
<tr>
<td>Unbalanced Cycling</td>
<td>Excessive suction lift.</td>
<td>For lifts exceeding 20' of liquid, filling the chambers with liquid will prime the pump in most cases.</td>
</tr>
<tr>
<td></td>
<td>Undersized suction line.</td>
<td>Meet or exceed pump connections.</td>
</tr>
<tr>
<td></td>
<td>Pumped fluid in air exhaust muffler.</td>
<td>Disassemble pump chambers. Inspect for diaphragm rupture or loose diaphragm plate assembly.</td>
</tr>
<tr>
<td></td>
<td>Suction side air leakage or air in product.</td>
<td>Visually inspect all suction-side gaskets and pipe connections.</td>
</tr>
<tr>
<td></td>
<td>Check valve obstructed.</td>
<td>Disassemble the wet end of the pump and manually dislodge obstruction in the check valve pocket.</td>
</tr>
<tr>
<td></td>
<td>Check valve and/or seat is worn or needs adjusting.</td>
<td>Inspect check valves and seats for wear and proper setting. Replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Entrained air or vapor lock in chamber(s).</td>
<td>Purge chambers through tapped chamber vent plugs.</td>
</tr>
</tbody>
</table>

For additional troubleshooting tips contact After Sales Support at service.warrenrupp@idexcorp.com or 419-524-8388
Troubleshooting Guide

Failure

Premature Diaphragm

Through Exhaust

Flow Unsatisfactory

Sluggish/Stalling,

Not Prime or No Flow

Pump Cycles and Will / Cycle

Pump Will Not Operate

Deadhead (system pressure meets or exceeds air supply pressure).

Symptom: Potential Cause(s): Recommendation(s):

- Undersized suction line. Meet or exceed pump connections.

- Excessive suction lift.

- Installed incorrectly or worn.

- Misapplication (chemical/physical incompatibility). Consult Chemical Resistance Chart for compatibility with products, cleaners, temperature limitations

- Move pump closer to product. Raise pump/place pump on top of tank to reduce inlet pressure.

- Diaphragm stretched around center hole or bolt holes. Check for excessive inlet pressure or air pressure. Consult Chemical Resistance Chart for compatibility

- Diaphragm failure, or diaphragm plates loose. Replace diaphragms, check for damage and ensure diaphragm plates are tight.

- Pumped fluid in air exhaust muffler.

- Remove or flush obstruction. Check and clear all suction screens or strainers.

- Suction side air leakage or air in product. Visually inspect all suction-side gaskets and pipe connections.

- Restrictive or undersized air line. Install a larger air line and connection.

- Decrease inlet air (press. and vol.) to the pump. Pump is cavitating the fluid by fast cycling.

- For lifts exceeding 20' of liquid, filling the chambers with liquid will prime the pump in most cases.

- Cavitation on suction side. Check suction (move pump closer to product).

- Lack of air (line size, PSI, CFM). Check the air line size and length, compressor capacity (HP vs. cfm required).

- Pump is over lubricated. Set lubricator on lowest possible setting or remove. Units are designed for lube free operation.

- Excessive suction lift.

- Suction line is blocked.

- Check valve and/or seat is worn or needs adjusting. Inspect check valves and seats for wear and proper setting. Replace if necessary.

- DOME DIAPHRAGM ASSEMBLY

- DROP IN MANIFOLDS

Optional orientation:

To ease assembly of the TPE diaphragms, one of the diaphragms may be reversed.
Composite Repair Parts List - Elastomeric and TPE Fitted

Air Valve Assembly

<table>
<thead>
<tr>
<th>Item #</th>
<th>Qty.</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Valve Body (includes items 2-11)</td>
<td>031.V003.156</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Valve Body</td>
<td>095.V001.156</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Valve Body Gasket</td>
<td>P24-202</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Valve Sleeve</td>
<td>755.V005.148</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>O-ring</td>
<td>560.206.360</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Valve Spool Assembly (Includes items 7)</td>
<td>775.V001.000</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Glyde Ring Assembly</td>
<td>P34-204F</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Air Valve Screen</td>
<td>P24-210</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>End Cap Gasket</td>
<td>P24-205</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>End Cap</td>
<td>P34-300</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>Mounting Screws (8 included on item 1)</td>
<td>S1001</td>
</tr>
</tbody>
</table>

Center Section Assembly

<table>
<thead>
<tr>
<th>Item #</th>
<th>Qty.</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>Center Block Assembly (Includes items 13&14)</td>
<td>P34-400DC ASY</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>Bearing Sleeve</td>
<td>P34-404</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>Main Shaft O-Ring</td>
<td>P34-403</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>Air Chamber</td>
<td>196.V008.157</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>Air Chamber Gasket</td>
<td>P79-109</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>Bolt</td>
<td>P24-110</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Pilot Sleeve Assembly (include item 19)</td>
<td>755.V002.000</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>O-ring</td>
<td>560.101.358</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>Retaining Ring</td>
<td>675.037.080</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>Pilot Spool Assembly (Includes item 22)</td>
<td>775.V006.000</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>O-ring</td>
<td>560.023.358</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>Muffler</td>
<td>530.033.000</td>
</tr>
</tbody>
</table>

Diaphragm Assembly / Elastomers

<table>
<thead>
<tr>
<th>Item #</th>
<th>Qty.</th>
<th>Description</th>
<th>Versa-Rugged</th>
<th>Versa-Dome</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1</td>
<td>Main Shaft</td>
<td>P34-103</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>Diaphragm (See Below Material Chart)</td>
<td>V305xx</td>
<td>V306xx</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>Outer Diaphragm Plate</td>
<td>V302BDC</td>
<td>VB307</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>Inner Diaphragm Plate</td>
<td>V302CDC</td>
<td>V307B</td>
</tr>
<tr>
<td>28</td>
<td>12</td>
<td>Bolt</td>
<td>V302G</td>
<td>N/A</td>
</tr>
<tr>
<td>29</td>
<td>12</td>
<td>Washer</td>
<td>V302GA</td>
<td>N/A</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>Bumper Washer</td>
<td>P34-501</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2</td>
<td>Back-Up Washer</td>
<td>V302E</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>Valve Seat (See Below Material Chart)</td>
<td>V456xx</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4</td>
<td>Valve Ball (See Below Material Chart)</td>
<td>V455xx</td>
<td></td>
</tr>
</tbody>
</table>

Wet End Assembly

<table>
<thead>
<tr>
<th>Item #</th>
<th>Qty.</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>2</td>
<td>Water Chamber</td>
<td>V350FB</td>
</tr>
<tr>
<td>35</td>
<td>20</td>
<td>Water Chamber Bolt</td>
<td>170.055.330</td>
</tr>
<tr>
<td>36</td>
<td>52</td>
<td>Nut</td>
<td>V387C</td>
</tr>
<tr>
<td>37</td>
<td>52</td>
<td>Washer</td>
<td>V387B</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>Manifold Tee</td>
<td>V358FB</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>Discharge Elbow</td>
<td>V351E-FB</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>Suction Elbow</td>
<td>V352E-FB</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>O-Ring</td>
<td>V258xx</td>
</tr>
<tr>
<td>42</td>
<td>32</td>
<td>Elbow Bolt</td>
<td>V387D</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>Discharge Drop in Manifold</td>
<td>518.V002.156</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>Suction Drop in Manifold</td>
<td>518.V003.156</td>
</tr>
</tbody>
</table>

Elastomer Material Specifications

<table>
<thead>
<tr>
<th>Material</th>
<th>Versa-Rugged Diaphragm P/N</th>
<th>Versa-Dome Diaphragm P/N</th>
<th>"Ball P/N"</th>
<th>Seat P/N</th>
<th>"Manifold Tee O-ring P/N"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoprene</td>
<td>V305N</td>
<td>V306N</td>
<td>V455N</td>
<td>V456N</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrile</td>
<td>V305BN</td>
<td>V306BN</td>
<td>V455BN</td>
<td>V456BN</td>
<td>V258BN</td>
</tr>
<tr>
<td>FKM</td>
<td>V305VT</td>
<td>V306VT</td>
<td>V455VT</td>
<td>V456VT</td>
<td>V258VT</td>
</tr>
<tr>
<td>EPDM</td>
<td>V305ND</td>
<td>V306ND</td>
<td>V455ND</td>
<td>V456ND</td>
<td>V258ND</td>
</tr>
<tr>
<td>PTFE</td>
<td>N/A</td>
<td>N/A</td>
<td>V455TF</td>
<td>V456TF</td>
<td>V258TFS</td>
</tr>
<tr>
<td>Santoprene</td>
<td>V305TPEXL</td>
<td>N/A</td>
<td>V455TPEXL</td>
<td>V456TPEXL</td>
<td>V258XL</td>
</tr>
<tr>
<td>Hytrel</td>
<td>V305TPEFG</td>
<td>N/A</td>
<td>V455TPEFG</td>
<td>V456TPEFG</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Composite Repair Parts Drawing - PTFE Fitted
Composite Repair Parts List - PTFE Fitted

Air Valve Assembly

<table>
<thead>
<tr>
<th>Item #</th>
<th>Qty.</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Valve Body (includes items 2-11)</td>
<td>031.V003.156</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Valve Body</td>
<td>095.V001.156</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Valve Body Gasket</td>
<td>P24-202</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Valve Sleeve</td>
<td>755.V005.148</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>O-ring</td>
<td>560.206.360</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Valve Spool Assembly (includes items 7)</td>
<td>775.V001.000</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Glyde Ring Assembly</td>
<td>P34-204F</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Air Valve Screen</td>
<td>P24-210</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>End Cap Gasket</td>
<td>P24-205</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>End Cap</td>
<td>P34-300</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>Mounting Screws (6 included on item 1)</td>
<td>S1001</td>
</tr>
</tbody>
</table>

Center Section Assembly

<table>
<thead>
<tr>
<th>Item #</th>
<th>Qty.</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>Center Block Assembly (includes item 13 & 14)</td>
<td>P34-400DC ASY</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>Bearing Sleeve</td>
<td>P34-404</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>Main Shaft O-Ring</td>
<td>P34-403</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>Air Chamber</td>
<td>196.V008.157</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>Air Chamber Gasket</td>
<td>P79-109</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>Bolt</td>
<td>P24-110</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Pilot Sleeve Assembly (include item 19)</td>
<td>755.V002.000</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>O-ring</td>
<td>560.101.358</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>Retaining Ring</td>
<td>675.037.080</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>Pilot Spool Assembly (includes item 22)</td>
<td>775.V006.000</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>O-ring</td>
<td>560.023.358</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>Muffler</td>
<td>530.033.000</td>
</tr>
</tbody>
</table>

Diaphragm Assembly / Elastomers

<table>
<thead>
<tr>
<th>Item #</th>
<th>Qty.</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1</td>
<td>Main Shaft</td>
<td>P34-103</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>Diaphragm</td>
<td>V305TF-FB</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>Back-Up Diaphragm</td>
<td>V305TFB</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>Outer Diaphragm Plate</td>
<td>V302TO</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>Inner Diaphragm Plate</td>
<td>V302TI</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>Bumper Washer</td>
<td>P34-501</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>Back-Up Washer</td>
<td>V302E</td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>Valve Seat (See Below Material Chart)</td>
<td>V456xx</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>Valve Ball</td>
<td>V455TF</td>
</tr>
</tbody>
</table>

Wet End Assembly

<table>
<thead>
<tr>
<th>Item #</th>
<th>Qty.</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>2</td>
<td>Water Chamber</td>
<td>V350FB</td>
</tr>
<tr>
<td>34</td>
<td>20</td>
<td>Water Chamber Bolt</td>
<td>170.055.330</td>
</tr>
<tr>
<td>35</td>
<td>52</td>
<td>Nut</td>
<td>V387C</td>
</tr>
<tr>
<td>36</td>
<td>52</td>
<td>Washer</td>
<td>V387B</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>Manifold Tee</td>
<td>V358FB</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>Discharge Elbow</td>
<td>V351E-FB</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>Suction Elbow</td>
<td>V352E-FB</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>Manifold Seal</td>
<td>V358TFS</td>
</tr>
<tr>
<td>41</td>
<td>32</td>
<td>Elbow Bolt</td>
<td>V387D</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>Discharge Drop in Manifold</td>
<td>518.V002.156</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>Suction Drop in Manifold</td>
<td>518.V003.156</td>
</tr>
</tbody>
</table>

Elastomer Material Specifications

<table>
<thead>
<tr>
<th>Material</th>
<th>Seat P/N</th>
<th>Manifold Seat O-Ring P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE</td>
<td>V456TF</td>
<td>N/A</td>
</tr>
<tr>
<td>Stainless Steel (not pictured)</td>
<td>SV456</td>
<td>See Note 2</td>
</tr>
</tbody>
</table>

Notes:
1.) The outer diaphragm plate material is to match the water chamber material (cast iron uses SV302B or SVB307)
2.) In addition to the stainless valve setas, (8) orings are needed. (4) SV456TES-1 and (4) SV456TES-2
Material Codes - The Last 3 Digits of Part Number

000.....Assembly, sub-assembly; and some purchased items
010.....Cast Iron
015.....Ductile Iron
020.....Ferritic Malleable Iron
080.....Carbon Steel, AISI B-1112
110.....Alloy Type 316 Stainless Steel
111.....Alloy Type 316 Stainless Steel (Electro Polished)
112.....Alloy C
113.....Alloy Type 316 Stainless Steel (Hand Polished)
114.....303 Stainless Steel
115.....302/304 Stainless Steel
117.....440-C Stainless Steel (Martensitic)
120.....416 Stainless Steel (Wrought Martensitic)
148.....Hardcoat Anodized Aluminum
150.....6061-T6 Aluminum
152.....2024-T4 Aluminum (2023-T351)
155.....356-T6 Aluminum
156.....356-T6 Aluminum
157.....Die Cast Aluminum Alloy #380
158.....Aluminum Alloy SR-319
162.....Brass, Yellow, Screw Machine Stock
165.....Cast Bronze, 85-5-5-5
166.....Bronze, SAE 660
170.....Bronze, Bearing Type, Oil Impregnated
180.....Copper Alloy
305.....Carbon Steel, Black Epoxy Coated
306.....Carbon Steel, Black PTFE Coated
307.....Aluminum, Black Epoxy Coated
308.....Stainless Steel, Black PTFE Coated
309.....Aluminum, Black PTFE Coated
313.....Aluminum, White Epoxy Coated
330.....Zinc Plated Steel
332.....Aluminum, Electroless Nickel Plated
333.....Carbon Steel, Electroless Nickel Plated
335.....Galvanized Steel
337.....Silver Plated Steel
351.....Food Grade Santoprene®
353.....Geolast; Color: Black
354.....Injection Molded #203-40 Santoprene® Duro 40D +/-5; Color: RED
356.....Hytrek®
357.....Injection Molded Polyurethane
358.....Urethane Rubber (Some Applications) (Compression Mold)
359.....Urethane Rubber
360.....Nitrile Rubber Color coded: RED
363.....FKM (Fluorocarbon) Color coded: YELLOW
364.....EPDM Rubber Color coded: BLUE
365.....Neoprene Rubber Color coded: GREEN
366.....Food Grade Nitrile
368.....Food Grade EPDM
371.....Philthane (Tuftane)
374.....Carboxylated Nitrile
375.....Fluorinated Nitrile
376.....High Density Polypropylene
379.....Conductive Nitrile
408.....Cork and Neoprene
425.....Compressed Fibre
426.....Blue Gard
440.....Vegetable Fibre
500.....Delrin® 500
502.....Conductive Acetal, ESD-800
503.....Conductive Acetal, Glass-Filled
506.....Delrin® 150
520.....Injection Molded PVDF Natural color
540.....Nylon
542.....Nylon
544.....Nylon Injection Molded
550.....Polyethylene
551.....Glass Filled Polypropylene
552.....Unfilled Polypropylene
555.....Polyvinyl Chloride
556.....Black Vinyl
558.....Conductive HDPE
570.....Rulon II®
580.....Ryton®
580.....PTFE (virgin material) Tetrafluorocarbon (TFE)
600.....PTFE, FDA Nitrile
603.....Blue Gylon®
604.....PTFE
606.....PTFE
607.....Envelop
608.....Conductive PTFE
610.....PTFE Encapsulated Silicon
611.....PTFE Encapsulated FKM
632.....Neoprene/Hytrel®
633.....FKM/PTFE
634.....EPDM/PTFE
635.....Neoprene/PTFE
637.....PTFE, FKM/PTFE
638.....PTFE, Hytrek®/PTFE
639.....Nitrile/TFE
643.....Santoprene®/EPDM
644.....Santoprene®/PTFE
650.....Santoprene® Diaphragm and Check Balls/EPDM Seals
656.....Santoprene® Diaphragm and Check Balls/EPDM Seals
661.....EPDM/Santoprene®
666.....FDA Nitrile Diaphragm, PTFE Overlay, Balls, and Seals
668.....PTFE, FDA Santoprene®/PTFE

• Delrin and Hytrek are registered tradenames of E.I. DuPont.
• Nylatron is a registered tradename of Polymer Corp.
• Gylon is a registered tradename of Garlock, Inc.
• Santoprene is a registered tradename of Exxon Mobil Corp.
• Rulon II is a registered tradename of Drexel Industries Corp.
• Ryton is a registered tradename of Phillips Chemical Co.
• Valox is a registered tradename of General Electric Co.
VERSAMATIC®
Warren Rupp, Inc.
A Unit of IDEX Corporation
800 North Main Street
P.O. Box 1568
Mansfield, OH 44901-1568 USA
Tel: 419-526-7296
Fax: 419-526-7289

This product has used the following harmonized standards to verify conformance:
- EN809:2012

VERSAMATIC®
Authorized Representative:
Director of Engineering
Authorized Representative:
IDEX Pump Technologies
R79 Shannon Industrial Estate,
Shannon, Co. Clare Ireland
Attn: Barry McMahon

06/14/2017 REV 08

VERSAMATIC®
Authorized/Approved By:

Dave Roseberry
Director of Engineering

DECLARATION OF CONFORMITY

DECLARATION DE CONFORMITE • DECLARACION DE CONFORMIDAD • ERKLÄRUNG BEZÜGLICH EINHALTUNG DER VORSCHRIFTEN

This product complies with the following European Community Directives:
EN809:2012

This product has used the following harmonized standards to verify conformance:
- EN809:2012

5 - YEAR Limited Product Warranty

Versamatic warrants to the original end-use purchaser that no product sold by Versamatic that bears a Versamatic brand shall fail under normal use and service due to a defect in material or workmanship within five years from the date of shipment from Versamatic’s factory.

The use of non-OEM replacement parts will void (or negate) agency certifications, including CE, ATEX, CSA, 3A and EC1935 compliance (Food Contact Materials). Warren Rupp, Inc. cannot ensure nor warrant non-OEM parts to meet the stringent requirements of the certifying agencies.

DECLARATION OF CONFORMITY

DECLARATION DE CONFORMITE • DECLARACION DE CONFORMIDAD • ERKLÄRUNG BEZÜGLICH EINHALTUNG DER VORSCHRIFTEN

MANUFACTURED BY: Versamatic
FABRIQUE PAR: Versamatic
FABRICADA POR: Versamatic
HERGESTELLT VON: Versamatic
FABBRICATO DA: Versamatic
VERVAARDIGD DOOR: Versamatic
TILLVERKADE AV: Versamatic
VALMISTAJA: Versamatic
PRODUSENT: Versamatic
FABRICANTE: Versamatic

PUMP MODEL SERIES: E SERIES, V SERIES, VT SERIES, VSMA3, SPA15, RE SERIES AND U2 SERIES

This product complies with the following European Community Directives:
- EN809:2012

On Machinery, according to Annex VIII

DECLARATION OF CONFORMITY

DECLARATION DE CONFORMITE • DECLARACION DE CONFORMIDAD • ERKLÄRUNG BEZÜGLICH EINHALTUNG DER VORSCHRIFTEN

MANUFACTURED BY: Versamatic
FABRIQUE PAR: Versamatic
FABRICADA POR: Versamatic
HERGESTELLT VON: Versamatic
FABBRICATO DA: Versamatic
VERVAARDIGD DOOR: Versamatic
TILLVERKADE AV: Versamatic
VALMISTAJA: Versamatic
PRODUSENT: Versamatic
FABRICANTE: Versamatic

PUMP MODEL SERIES: E SERIES, V SERIES, VT SERIES, VSMA3, SPA15, RE SERIES AND U2 SERIES

This product complies with the following European Community Directives:
- EN809:2012

On Machinery, according to Annex VIII

DECLARATION OF CONFORMITY

DECLARATION DE CONFORMITE • DECLARACION DE CONFORMIDAD • ERKLÄRUNG BEZÜGLICH EINHALTUNG DER VORSCHRIFTEN

MANUFACTURED BY: Versamatic
FABRIQUE PAR: Versamatic
FABRICADA POR: Versamatic
HERGESTELLT VON: Versamatic
FABBRICATO DA: Versamatic
VERVAARDIGD DOOR: Versamatic
TILLVERKADE AV: Versamatic
VALMISTAJA: Versamatic
PRODUSENT: Versamatic
FABRICANTE: Versamatic

PUMP MODEL SERIES: E SERIES, V SERIES, VT SERIES, VSMA3, SPA15, RE SERIES AND U2 SERIES

This product complies with the following European Community Directives:
- EN809:2012

On Machinery, according to Annex VIII

DECLARATION OF CONFORMITY

DECLARATION DE CONFORMITE • DECLARACION DE CONFORMIDAD • ERKLÄRUNG BEZÜGLICH EINHALTUNG DER VORSCHRIFTEN
EU Declaration of Conformity

Manufacturer:
Versamatic
A Unit of IDEX Corporation
800 North Main Street
Mansfield, OH 44902 USA

Warren Rupp, Inc declares that Air Operated Double Diaphragm Pumps (AODD) and Surge Suppressors listed below comply with the requirements of Directive 2014/34/EU and all the applicable standards.

Applicable Standards:
- EN 60079-25: 2010

1. AODD Pumps and Surge Suppressors - Technical File No.: 20310400 -1410/MER

Hazardous Location Applied:

II 2 G Ex h IIC T5...225°C (T2) Gb
II 2 D Ex h IIIC T100°C...T200°C Db

- Metal pump models with external aluminum components (E-series)
- Versa-Surge® surge suppressors (VTA-Series)

2. AODD Pumps - Technical File No.: 20310400 -1410/MER - On File With: DEKRA Certification B.V. (0344)

Hazardous Location Applied:

I M2 Ex h Mb
II 2 G Ex h IIC T5...225°C (T2) Gb
II 2 D Ex h IIIIC T100°C...T200°C Db

- Metal pump models with no external aluminum (E-Series)
- Conductive plastic pumps (E-Series Plastic)

See "Safety Information" page for conditions of safe use

DATE/OF REVISION/TITLE:
19 DEC 2018

Dave Roseberry
Director of Engineering